Semi-interpenetrating anion exchange membranes using hydrophobic microporous linear poly(ether ketone)

[Display omitted] In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisinda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-03, Vol.634, p.110-120
Hauptverfasser: Hui Chen, Jia, Ting Gao, Wei, Shuen Lann Choo, Yvonne, Lang Gao, Xue, Jie Liu, Ying, Bin Yue, Xi, Hao Wang, Xi, Mei Zhu, Ai, Gen Zhang, Qiu, Lin Liu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisindane-based intrinsically microporous poly(ether ketone) (PEK-SBI). The formation of phase separated structures as a result of the incompatibility between the hydrophilic PBP network and the hydrophobic PEK-SBI segment, has successfully promoted the hydroxide ion conductivity of AEMs. A swelling ratio (SR) as low as 12.2 % at 80 °C was recorded for the sIPN containing hydrophobic PEK-SBI as the linear polymer and crosslinked structure with a mass ratio of PBP to PEK-SBI of 90/10 (sIPN-90/10(PEK-SBI)). The sIPN-90/10(PEK-SBI) AEM achieved the highest hydroxide ion conductivity of 122.4 mS cm−1 at 80 °C and a recorded ion exchange capacity (IEC) of 2.26 meq g−1. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) clearly revealed the improved phase separation structure of sIPN-90/10(PEK-SBI). N2 adsorption isotherm indicated that the Brunauer-Emmett-Teller (BET) surface area of the AEMs increased with the increase of microporous PEK-SBI content. Interestingly, the sIPN-90/10(PEK-SBI) AEM showed good alkaline stability for being able to maintain a conductivity of 94.7 % despite being soaked in a 1 M sodium hydroxide solution at 80 °C for 30 days. Meanwhile, a peak power density of 481 mW cm−2 can be achieved by the hydrogen/oxygen single cell using sIPN-90/10(PEK-SBI) as the AEM.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.12.032