Grain boundary cracking
A chronological summary is given of the various types of grain boundary fracture found in metals. In each case, there is an impurity that adsorbs at the new (fracture) surface being formed. For the case of Fe-P alloys, a quantitative argument can show that adsorption of phosphorous on the free surfa...
Gespeichert in:
Veröffentlicht in: | Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1998-06, Vol.29 (6), p.1535-1544 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A chronological summary is given of the various types of grain boundary fracture found in metals. In each case, there is an impurity that adsorbs at the new (fracture) surface being formed. For the case of Fe-P alloys, a quantitative argument can show that adsorption of phosphorous on the free surface greatly reduces the barrier to void nucleation compared to that in the absence of phosphorous. The same or larger reduction would appear for any other element, which adsorbs more strongly than phosphorous and displaces it at the surface. Such an argument is shown to explain a great many cases of dimpled grain boundary fracture in strong alloys undergoing creep or hydrogen attack. The reduction in surface energy can also lead to a smooth grain boundary fracture (no void nucleation), in which diffusion of solute to the new surface limits crack growth. Numerous examples of this are also discussed. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-998-0075-4 |