Hilbert-Schmidt lower bounds for estimators on matrix lie groups for ATR

Deformable template representations of observed imagery model the variability of target pose via the actions of the matrix Lie groups on rigid templates. In this paper, we study the construction of minimum mean squared error estimators on the special orthogonal group, SO(n), for pose estimation. Due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1998-08, Vol.20 (8), p.790-802
Hauptverfasser: Grenander, U., Miller, M.I., Srivastava, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deformable template representations of observed imagery model the variability of target pose via the actions of the matrix Lie groups on rigid templates. In this paper, we study the construction of minimum mean squared error estimators on the special orthogonal group, SO(n), for pose estimation. Due to the nonflat geometry of SO(n), the standard Bayesian formulation of optimal estimators and their characteristics requires modifications. By utilizing Hilbert-Schmidt metric defined on GL(n), a larger group containing SO(n), a mean squared criterion is defined on SO(n). The Hilbert-Schmidt estimate (HSE) is defined to be a minimum mean squared error estimator, restricted to SO(n). The expected error associated with the HSE is shown to be a lower bound, called the Hilbert-Schmidt bound (HSB), on the error incurred by any other estimator. Analysis and algorithms are presented for evaluating the HSE and the HSB in cases of both ground-based and airborne targets.
ISSN:0162-8828
1939-3539
DOI:10.1109/34.709572