Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers
The mixed mode delamination behavior of through-thickness reinforced carbon–epoxy laminates was investigated using two different test specimens, a T-stiffener and a mixed-mode bending (MMB) specimen. Small quantities of titanium or carbon z-fibers (short rods) substantially improve delamination resi...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2002-01, Vol.33 (2), p.177-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mixed mode delamination behavior of through-thickness reinforced carbon–epoxy laminates was investigated using two different test specimens, a T-stiffener and a mixed-mode bending (MMB) specimen. Small quantities of titanium or carbon z-fibers (short rods) substantially improve delamination resistance in both types of specimen. Reinforcement raises the ultimate strength of the MMB specimen by a factor of three. However, the failure sequence and therefore the ultimate load in the T-stiffeners depend strongly on the test configuration. No change in ultimate load is seen in some cases but up to 40% improvement is observed in others. Improved delamination resistance results from crack bridging by the z-fibers, which reduces the driving force for crack growth. Mode I crack displacement is suppressed more effectively than mode II displacement, resulting in purely mode II cracking in what without z-fibers would be a mixed mode or primarily mode I loading situation. This important consequence of so-called large scale bridging effects confirms recent theoretical results for delamination specimens. The mechanisms of bridging and crack propagation are described here in detail. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/S1359-835X(01)00109-9 |