Heat transfer coefficient in a high pressure tubular reactor for ethylene polymerization

Heat transfer in tubular reactors for the high pressure polymerization of ethylene is very complex, since these tubular reactors are usually divided into several zones that exhibit different flow patterns and critical fouling behavior. The correct estimation of the overall heat transfer coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 1998-06, Vol.38 (6), p.992-1013
Hauptverfasser: Lacunza, Marta H., Ugrin, Pedro E., Brandolin, Adriana, Capiati, Numa J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat transfer in tubular reactors for the high pressure polymerization of ethylene is very complex, since these tubular reactors are usually divided into several zones that exhibit different flow patterns and critical fouling behavior. The correct estimation of the overall heat transfer coefficient along the reactor axial distance is a major issue when assessing the predictive capabilities of a mathematical model for the process. In general, previous models employed either constant heat transfer coefficients or the usual correlations for the Nusselt number. Neither of these two approaches is accurate enough to allow a correct prediction of the reactor behavior with respect to temperature profiles and product molecular properties. The present work performs a more comprehensive estimation of the heat transfer coefficient in these reactors. At a first stage the overall heat transfer coefficients were estimated by using approapriate energy balances and a good set of experimental data. Then, a predictive model was proposed for the overall heat transfer coefficient. All flow regimes, as well as fouling effects, were taken into account, and the parameter estimation was based on temperature profiles obtained from an industrial reactor. The temperature profiles, conversions, pressures and molecular properties calculated by means of the experimentally fitted heat transfer coefficients or with the predictive model showed good agreement with plant data.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.10267