Diffraction model-informed neural network for unsupervised layer-based computer-generated holography

Learning-based computer-generated holography (CGH) has shown remarkable promise to enable real-time holographic displays. Supervised CGH requires creating a large-scale dataset with target images and corresponding holograms. We propose a diffraction model-informed neural network framework (self-holo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-12, Vol.30 (25), p.44814-44826
Hauptverfasser: Shui, Xinghua, Zheng, Huadong, Xia, Xinxing, Yang, Furong, Wang, Weisen, Yu, Yingjie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning-based computer-generated holography (CGH) has shown remarkable promise to enable real-time holographic displays. Supervised CGH requires creating a large-scale dataset with target images and corresponding holograms. We propose a diffraction model-informed neural network framework (self-holo) for 3D phase-only hologram generation. Due to the angular spectrum propagation being incorporated into the neural network, the self-holo can be trained in an unsupervised manner without the need of a labeled dataset. Utilizing the various representations of a 3D object and randomly reconstructing the hologram to one layer of a 3D object keeps the complexity of the self-holo independent of the number of depth layers. The self-holo takes amplitude and depth map images as input and synthesizes a 3D hologram or a 2D hologram. We demonstrate 3D reconstructions with a good 3D effect and the generalizability of self-holo in numerical and optical experiments.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.474137