Growing a tree classifier with imprecise data

Symbolic data analysis proposes a general framework to extend usual data analysis methods to more complex data called symbolic objects. The prediction problem for symbolic objects is defined: it is seen to be a generalization of the prediction for standard data. An algorithm of tree-growing is devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2000-08, Vol.21 (9), p.787-803
Hauptverfasser: Ciampi, A., Diday, E., Lebbe, J., Périnel, E., Vignes, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symbolic data analysis proposes a general framework to extend usual data analysis methods to more complex data called symbolic objects. The prediction problem for symbolic objects is defined: it is seen to be a generalization of the prediction for standard data. An algorithm of tree-growing is developed for probabilistically imprecise data. The new algorithm is presented as a procedure for extracting knowledge from data of a more general type than standard data. Two data sets, respectively, based on categorical and continuous variables, are treated in detail.
ISSN:0167-8655
1872-7344
DOI:10.1016/S0167-8655(00)00040-4