Growing a tree classifier with imprecise data
Symbolic data analysis proposes a general framework to extend usual data analysis methods to more complex data called symbolic objects. The prediction problem for symbolic objects is defined: it is seen to be a generalization of the prediction for standard data. An algorithm of tree-growing is devel...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2000-08, Vol.21 (9), p.787-803 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Symbolic data analysis proposes a general framework to extend usual data analysis methods to more complex data called symbolic objects. The prediction problem for symbolic objects is defined: it is seen to be a generalization of the prediction for standard data. An algorithm of tree-growing is developed for probabilistically imprecise data. The new algorithm is presented as a procedure for extracting knowledge from data of a more general type than standard data. Two data sets, respectively, based on categorical and continuous variables, are treated in detail. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/S0167-8655(00)00040-4 |