Automated periodontitis bone loss diagnosis in panoramic radiographs using a bespoke two-stage detector

Periodontitis is a serious oral disease that can lead to severe conditions such as bone loss and teeth falling out if left untreated. Diagnosis of radiographic bone loss (RBL) is critical for the staging and treatment of periodontitis. Unfortunately, the RBL diagnosis by examining the panoramic radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-01, Vol.152, p.106374-106374, Article 106374
Hauptverfasser: Kong, Zhengmin, Ouyang, Hui, Cao, Yiyuan, Huang, Tao, Ahn, Euijoon, Zhang, Maoqi, Liu, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodontitis is a serious oral disease that can lead to severe conditions such as bone loss and teeth falling out if left untreated. Diagnosis of radiographic bone loss (RBL) is critical for the staging and treatment of periodontitis. Unfortunately, the RBL diagnosis by examining the panoramic radiographs is time-consuming. The demand for automated image analysis is urgent. However, existing deep learning methods have limited performances in diagnosis accuracy and have certain difficulties in implementation. Hence, we propose a novel two-stage periodontitis detection convolutional neural network (PDCNN), where we optimize the detector with an anchor-free encoding that allows fast and accurate prediction. We also introduce a proposal-connection module in our detector that excludes less relevant regions of interests (ROIs), making the network focus on more relevant ROIs to improve detection accuracy. Furthermore, we introduced a large-scale, high-resolution panoramic radiograph dataset that captures various complex cases with professional periodontitis annotations. Experiments on our panoramic-image dataset show that the proposed approach achieved an RBL classification accuracy of 0.762. This result shows that our approach outperforms state-of-the-art detectors such as Faster R-CNN and YOLO-v4. We can conclude that the proposed method successfully improves the RBL detection performance. The dataset and our code have been released on GitHub. (https://github.com/PuckBlink/PDCNN). •A novel detector is proposed for periodontitis detection (PDCNN).•PDCNN is combined with a proposal-connection module to perform better.•We construct a new dental-image dataset with periodontitis annotations.•Experiments show that PDCNN outperforms state-of-the-art detectors.•We made this dataset and our code publicly available on GitHub.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2022.106374