Computational analysis of retinal image quality with different contact lens designs in keratoconus

To determine 1) the relative differences in optical quality of keratoconic eyes fitted with four routinely used CL designs and 2) the Zernike coefficients in the residual wavefront aberration map that may be responsible for differences in the optical quality of keratoconic eyes fitted with these CLs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contact lens & anterior eye 2023-04, Vol.46 (2), p.101794-101794, Article 101794
Hauptverfasser: Devi, Preetirupa, Kumar, Preetam, Bharadwaj, Shrikant R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine 1) the relative differences in optical quality of keratoconic eyes fitted with four routinely used CL designs and 2) the Zernike coefficients in the residual wavefront aberration map that may be responsible for differences in the optical quality of keratoconic eyes fitted with these CLs. Wavefront aberrations over a 3-mm pupil diameter were measured without and with Kerasoft IC®, Rose K2®, conventional spherical Rigid Gas Permeable (RGP), and Scleral CLs in 15 mild to moderate keratoconic eyes (20 – 28 years) and under unaided viewing in 10 age-similar non-contact lens wearing controls. The resultant through-focus curves constructed for the logarithm of Neural Sharpness (logNS) Image Quality (IQ) metric were quantified in terms of peak value, best focus, and depth of focus. Sensitivity analyses determined the impact of the residual Zernike coefficients of keratoconic eyes fitted with CLs on the IQ of controls at emmetropic refraction. The peak IQ and depth of focus were similar with Rose K2®, conventional RGP, and Scleral CLs (p > 0.05, for all) but significantly better than Kerasoft IC® CLs (p  0.2 for all). However, the IQ parameters of all the lenses remained significantly poorer than the controls (p 
ISSN:1367-0484
1476-5411
DOI:10.1016/j.clae.2022.101794