Galaxy formation and evolution - I. The Padua tree-sph code (pd-sph)

In this paper we report on pd-sph, the new tree-sph code developed in Padua. The main features of the code are described and the results of a new and independent series of 1D and 3D tests are shown. The paper is mainly dedicated to the presentation of the code and to the critical discussion of its p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 1998-07, Vol.297 (4), p.1021-1040
Hauptverfasser: Carraro, Giovanni, Lia, Cesario, Chiosi, Cesare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we report on pd-sph, the new tree-sph code developed in Padua. The main features of the code are described and the results of a new and independent series of 1D and 3D tests are shown. The paper is mainly dedicated to the presentation of the code and to the critical discussion of its performance. In particular, great attention is devoted to the convergency analysis. The code is highly adaptive in space and time by means of individual smoothing lengths and individual time-steps. At present it contains both dark and baryonic matter, this latter in the form of gas and stars, cooling, thermal conduction, star formation, feedback from Type I and II supernovae, stellar winds, and ultraviolet flux from massive stars, and finally chemical enrichment. New cooling rates that depend on the metal abundance of the interstellar medium are employed, and the differences with respect to the standard ones are outlined. Finally, we show the simulation of the dynamical and chemical evolution of a disc-like galaxy with and without feedback. The code is suitably designed to study in a global fashion the problem of formation and evolution of elliptical galaxies, and in particular to feed a spectrophotometric code from which the integrated spectra, magnitudes and colours (together with their spatial gradients) can be derived.
ISSN:0035-8711
1365-2966
DOI:10.1046/j.1365-8711.1998.2970041021.x