Development of nanoluciferase-based sensing system that can specifically detect 1α,25-dihydroxyvitamin D in living cells

Previously, we reported a FLucN-LXXLL+LBD-FLucC system that detects VDR ligands using split firefly luciferase techniques, ligand binding domain (LBD) of VDR, and LXXLL sequences that interact with LBD after VDR ligand binding. In vivo, 25-hydroxyvitamin D3 (25(OH)D3) and 1α,25-dihydroxyvitamin D3 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of steroid biochemistry and molecular biology 2023-03, Vol.227, p.106233-106233, Article 106233
Hauptverfasser: Mano, Hiroki, Kushioka, Takuya, Kise, Satoko, Nagao, Chika, Iijima, Ayano, Nishikawa, Miyu, Ikushiro, Shinichi, Yasuda, Kaori, Matsuoka, Sayuri, Sakaki, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we reported a FLucN-LXXLL+LBD-FLucC system that detects VDR ligands using split firefly luciferase techniques, ligand binding domain (LBD) of VDR, and LXXLL sequences that interact with LBD after VDR ligand binding. In vivo, 25-hydroxyvitamin D3 (25(OH)D3) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) act as VDR ligands that bind to VDR, and regulate bone-related gene expression. Therefore, the amount of 25(OH)D3 and 1α,25(OH)2D3 are indicators of bone-related diseases such as rickets and osteoporosis. In this study, we have developed a novel LgBiT-LXXLL+LBD-SmBiT system using NanoLuc Binary Technology (NanoBiT), which has an emission intensity several times higher than that of the split-type firefly luciferase. Furthermore, by using genetic engineering techniques, we attempted to construct a novel system that can specifically detect 1α,25(OH)2D3. Because histidine residues at positions 305 and 397 play important roles in forming a hydrogen bond with a hydroxyl group at position C25 of 25(OH)D3 and 1α,25(OH)2D3, His305 and His397 were each substituted by other amino acids. Consequently, the three mutant VDRs, H305D, H397N, and H397E were equally useful to detect 1α,25(OH)2D3 specifically. In addition, among the 58 variants of the LXXLL sequences, LPYEGSLLLKLLRAPVEE showed the greatest increase in luminescence upon the addition of 25(OH)D3 or 1α,25(OH)2D3. Thus, our novel system using NanoBiT appear to be useful for detecting native vitamin D or its derivatives. •A novel vitamin D biosensor using VDR and nanoluciferase was constructed.•Its emission intensity was several times higher than that using firefly luciferase.•Novel biosensors using VDR mutants specifically detected 1α,25(OH)2D3.•They appear to be useful to measure plasma 1α,25(OH)2D3 concentration.
ISSN:0960-0760
1879-1220
DOI:10.1016/j.jsbmb.2022.106233