Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications

As the power density of electronic devices continuously increases, there is a growing demand to improve the heat conduction performance of thermal management materials for addressing heat dissipation issues. Single-/few-layer graphene is a promising candidate as a filler of a metal matrix due to its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-12, Vol.14 (50), p.56156-56168
Hauptverfasser: Chang, Guo, Wang, Luhua, Zhang, Yongjian, Li, Xiang, Chen, Kaiyun, Kan, Dongxiao, Zhang, Wei, Zhang, Shuang, Dong, Longlong, Li, Liang, Bai, Xue, Zhang, Hailong, Huo, Wangtu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the power density of electronic devices continuously increases, there is a growing demand to improve the heat conduction performance of thermal management materials for addressing heat dissipation issues. Single-/few-layer graphene is a promising candidate as a filler of a metal matrix due to its extremely high thermal conductivity (k); however, the well-arranged assembly of 2D-component graphene with a high volume fraction remains challenging. Herein, we integrated a novel graphene-based macroscopic material of graphene film (GF) into a Cu matrix by infiltrating molten Zr-microalloyed Cu into a spirally folded and upright-standing GFs skeleton. The microstructure of the GF/Cu composites was regulated by an interface modification strategy. The GF/Cu composites with a spirally layered microstructure exhibit a superior k of 820 W/m K in the axial direction, much higher than that of Cu-matrix composites reinforced with graphene nanosheets (generally
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c18101