Multi-omics analysis of kinesin family member 2C in human tumors: novel prognostic biomarker and tumor microenvironment regulator

Kinesin family member 2C (KIF2C) is the best-characterized member of the kinesin-13 family and is involved in accurately fine-tuned dynamics of mitotic spindles. As KIF2C is involved in both spindle formation and regulation of DNA double-strand breaks, precise regulation of KIF2C is essential to pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of cancer research 2022, Vol.12 (11), p.4954
Hauptverfasser: Zhang, Bixi, Liu, Peng, Li, Yanchun, Hu, Qing, Li, Huan, Pang, Xiaoyang, Wu, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kinesin family member 2C (KIF2C) is the best-characterized member of the kinesin-13 family and is involved in accurately fine-tuned dynamics of mitotic spindles. As KIF2C is involved in both spindle formation and regulation of DNA double-strand breaks, precise regulation of KIF2C is essential to prevent malignant transformation associated with gains and losses of DNA content. In the present study, we initially reviewed The Cancer Genome Atlas database and observed that KIF2C is abundantly expressed in most tumor types. We then analyzed the gene alteration profile, protein expression, prognosis, and immune reactivities of KIF2C in more than 10,000 samples from several well-established databases. In addition, we conducted a gene enrichment set analysis to investigate the potential mechanisms underlying the role of KIF2C in tumorigenesis. Multi-omics analysis of KIF2C demonstrated significant statistical correlations between KIF2C expression and clinical prognosis, oncogenic signature gene sets, myeloid-derived suppressor cell infiltration, ImmunoScore, immune checkpoints, microsatellite instability, and tumor mutational burden across multiple tumors. Single-cell data showed that KIF2C is abundantly expressed in malignant cells. The experimental validation demonstrated that KIF2C is highly expressed in gastric cancer cell lines, gastric adenocarcinoma, and hepatocelluar carcinoma. The findings of this study provide important insight for understanding the role and mechanisms of KIF2C in tumorigenesis and immunotherapy in a variety of cancers.
ISSN:2156-6976
2156-6976