Catecholamines modulate the hypoxic ventilatory response of larval zebrafish (Danio rerio)

The hypoxic ventilatory response (HVR) in fish is an important reflex that aids O2 uptake when low environmental O2 levels constrain diffusion. In developing zebrafish (Danio rerio), the acute HVR is multiphasic, consisting of a rapid increase in ventilation frequency (fV) during hypoxia onset, foll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2023-01, Vol.226 (1)
Hauptverfasser: Kevin Pan, Yihang, Julian, Tess, Garvey, Kayla, Perry, Steve F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hypoxic ventilatory response (HVR) in fish is an important reflex that aids O2 uptake when low environmental O2 levels constrain diffusion. In developing zebrafish (Danio rerio), the acute HVR is multiphasic, consisting of a rapid increase in ventilation frequency (fV) during hypoxia onset, followed by a decline to a stable plateau phase above fV under normoxic conditions. In this study, we examined the potential role of catecholamines in contributing to each of these phases of the dynamic HVR in zebrafish larvae. We showed that adrenaline elicits a dose-dependent β-adrenoreceptor (AR)-mediated increase in fV that does not require expression of β1-ARs, as the hyperventilatory response to β-AR stimulation was unaltered in adrb1-/- mutants, generated by CRISPR/Cas9 knockout. In response to hypoxia and propranolol co-treatment, the magnitude of the rapidly occurring peak increase in fV during hypoxia onset was attenuated (112±14 breaths min-1 without propranolol to 68±17 breaths min-1 with propranolol), whereas the increased fV during the stable phase of the HVR was prevented in both wild type and adrb1-/- mutants. Thus, β1-AR is not required for the HVR and other β-ARs, although not required for initiation of the HVR, are involved in setting the maximal increase in fV and in maintaining hyperventilation during continued hypoxia. This adrenergic modulation of the HVR may arise from centrally released catecholamines because adrenaline exposure failed to activate (based on intracellular Ca2+ levels) cranial nerves IX and X, which transmit O2 signals from the pharyngeal arch to the central nervous system.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.245051