HRS Regulates Small Extracellular Vesicle PD-L1 Secretion and Is Associated with Anti-PD-1 Treatment Efficacy
PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and me...
Gespeichert in:
Veröffentlicht in: | Cancer immunology research 2023-02, Vol.11 (2), p.228-240 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and measurement of circulating sEV PD-L1, we found that the endosomal sorting complex required for transport (ESCRT) member protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was the key regulator of circulating sEV PD-L1 in head and neck squamous cell carcinoma (HNSCC) patients. Increased HRS expression was found in tumor tissues and positively correlated with elevated circulating sEV PD-L1 in patients with HNSCC. The expression of HRS was also negatively correlated to the infiltration of CD8+ T cells. Knockdown of HRS markedly reduced PD-L1 expression in HNSCC cell-derived sEVs, and these sEVs from HRS knockdown cells showed decreased immunosuppressive effects on CD8+ T cells. Knockout of HRS inhibited tumor growth in immunocompetent mice together with PD-1 blockade. Moreover, a higher HRS expression was associated with a lower response rate to anti-PD-1 therapy in patients with HNSCC. In summary, our study reveals HRS, the core component of ESCRT-0, regulates sEV PD-L1 secretion, and is associated with the response to ICB therapy in patients with HNSCC, suggesting HRS is a promising target to improve cancer immunotherapy. |
---|---|
ISSN: | 2326-6066 2326-6074 |
DOI: | 10.1158/2326-6066.CIR-22-0277 |