Distributed evolutionary optimization, in Manifold: Rosenbrock's function case study
A competitive coevolutionary approach using loosely coupled genetic algorithms is proposed for a distributed optimization of Rosenbrock's function. The computational scheme is a coevolutionary system of agents with only local interaction among them, without any central synchronization. We use a...
Gespeichert in:
Veröffentlicht in: | Information sciences 2000, Vol.122 (2), p.141-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A competitive coevolutionary approach using loosely coupled genetic algorithms is proposed for a distributed optimization of Rosenbrock's function. The computational scheme is a coevolutionary system of agents with only local interaction among them, without any central synchronization. We use a recently developed coordination language, called Manifold, to implement our distributed optimization algorithm. We show that this implementation outperforms a sequential optimization algorithm based on standard genetic algorithms. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/S0020-0255(99)00116-4 |