Dependence of impact properties on irradiation temperature in reduced-activation martensitic steels

Ductile–brittle transition (DBT) behavior of 9%Cr-2%W reduced-activation martensitic (RAM) steels has been investigated following neutron irradiation in the fast flux test facility, materials open test facility (FFTF/MOTA) at different temperatures. Both the irradiations at 663 and 733 K cause an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 1998-10, Vol.258, p.1340-1344
Hauptverfasser: Kimura, Akihiko, Narui, Minoru, Misawa, Toshihei, Matsui, Hideki, Kohyama, Akira
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ductile–brittle transition (DBT) behavior of 9%Cr-2%W reduced-activation martensitic (RAM) steels has been investigated following neutron irradiation in the fast flux test facility, materials open test facility (FFTF/MOTA) at different temperatures. Both the irradiations at 663 and 733 K cause an increase in DBT temperature, while the irradiation at 663 K induces the hardening and the softening at 733 K. Microstructural observation by transmission electron microscope (TEM) revealed that small dislocation loops existed in the specimen irradiated at 663 K and no such a loop, but relatively large M 6C carbides and Laves phase were formed by the irradiation at 733 K. There appears to be a linear dependence between ΔDBTT and Δ σ Y in neutron irradiated RAM steels when irradiation induces the hardening. Irradiation embrittlement accompanied by the softening is considered to be due to reduction of cleavage fracture stress caused by the irradiation-induced recovery of the martensitic structure, namely decrease in dislocation density and formation of large precipitates.
ISSN:0022-3115
1873-4820
DOI:10.1016/S0022-3115(98)00321-3