Long-term changes in cortical representation through perceptual learning of spectrally degraded speech
Listeners can adapt to acoustically degraded speech with perceptual training. The learning processes for long periods underlies the rehabilitation of patients with hearing aids or cochlear implants. Perceptual learning of acoustically degraded speech has been associated with the frontotemporal corti...
Gespeichert in:
Veröffentlicht in: | Journal of Comparative Physiology 2023-01, Vol.209 (1), p.163-172 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Listeners can adapt to acoustically degraded speech with perceptual training. The learning processes for long periods underlies the rehabilitation of patients with hearing aids or cochlear implants. Perceptual learning of acoustically degraded speech has been associated with the frontotemporal cortices. However, neural processes during and after long-term perceptual learning remain unclear. Here we conducted perceptual training of noise-vocoded speech sounds (NVSS), which is spectrally degraded signals, and measured the cortical activity for seven days and the follow up testing (approximately 1 year later) to investigate changes in neural activation patterns using functional magnetic resonance imaging. We demonstrated that young adult participants (
n
= 5) improved their performance across seven experimental days, and the gains were maintained after 10 months or more. Representational similarity analysis showed that the neural activation patterns of NVSS relative to clear speech in the left posterior superior temporal sulcus (pSTS) were significantly different across seven training days, accompanying neural changes in frontal cortices. In addition, the distinct activation patterns to NVSS in the frontotemporal cortices were also observed 10–13 months after the training. We, therefore, propose that perceptual training can induce plastic changes and long-term effects on neural representations of the trained degraded speech in the frontotemporal cortices. These behavioral improvements and neural changes induced by the perceptual learning of degraded speech will provide insights into cortical mechanisms underlying adaptive processes in difficult listening situations and long-term rehabilitation of auditory disorders. |
---|---|
ISSN: | 0340-7594 1432-1351 |
DOI: | 10.1007/s00359-022-01593-8 |