Design of Monovalent Cerium-Based Metal Organic Frameworks as Bioinspired Superoxide Dismutase Mimics for Ionizing Radiation Protection

Superoxide dismutase (SOD) is one of the major antioxidants in vivo and is expected to play critical roles on the defense against reactive oxygen species (ROS)-mediated damages, such as ionizing radiation damages. Herein, inspired by the function and structure of natural SODs and cerium oxide nanozy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-12, Vol.14 (49), p.54587-54597
Hauptverfasser: Liu, Ya, Li, He, Liu, Wei, Guo, Jiao, Yang, Haiyu, Tang, Haikang, Tian, Maoye, Nie, Hongmei, Zhang, Xiaodong, Long, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superoxide dismutase (SOD) is one of the major antioxidants in vivo and is expected to play critical roles on the defense against reactive oxygen species (ROS)-mediated damages, such as ionizing radiation damages. Herein, inspired by the function and structure of natural SODs and cerium oxide nanozymes, two monovalent cerium-based metal organic frameworks (Ce-MOFs), CeIIIBTC and CeIVBTC, were designed for superoxide radical (O2 •–) elimination and ionizing radiation protection. These two Ce-MOFs selectively scavenge O2 •– and are excellent SOD mimics. Like natural SODs and cerium oxide nanozymes, the SOD-like catalytic mechanism of Ce-MOFs involves a cycle between Ce­(IV) and Ce­(III). Furthermore, by constructing monovalent Ce-MOFs, we found that high-valent CeIVBTC are more effective SOD-like nanozymes compared to CeIIIBTC. With smaller size, better monodispersity, and more effective SOD-like activity, CeIVBTC nanozymes were further applied for ionizing radiation protection. Both in vitro and in vivo results demonstrated that CeIVBTC nanozymes could efficiently scavenge ROS, prevent cells from γ-ray radiation-induced cell viability decrease and DNA damages, and improve the survival rate of irradiated mice by recovering the bone marrow DNA damage and alleviating oxidative stress of tissues. The protective effect and good biocompatibility of CeIVBTC nanozymes will enable the development of Ce-MOFs-based radioprotectants and facilitate treatment of other ROS-related diseases.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c17358