Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods

The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-02, Vol.227, p.1151-1161
Hauptverfasser: Hashemi-Shahraki, Fatemeh, Shareghi, Behzad, Farhadian, Sadegh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic, and anti-cancer effects. The current study aimed to see how quercetin interacts with pepsin in an aqueous environment under physiological conditions. Absorbance and emission spectroscopy, circular dichroism (CD), and kinetic methods, as well as molecular dynamic (MD) simulation and docking, were applied to study the effects of Qu on the structure, dynamics, and kinetics of pepsin. Stern-Volmer (Ksv) constants were computed for the pepsin-quercetin complex at three temperatures, showing that Qu reduces enzyme emission spectra using a static quenching. With Qu binding, the Vmax and the kcat/Km values decreased. UV–vis absorption spectra, fluorescence emission spectroscopy, and CD result indicated that Qu binding to pepsin leads to microenvironmental changes around the enzyme, which can alter the enzyme's secondary structure. Therefore, quercetin caused alterations in the function and structure of pepsin. Thermodynamic parameters, MD binding, and docking simulation analysis showed that non-covalent reactions, including the hydrophobic forces, played a key role in the interaction of Qu with pepsin. The findings conclude of spectroscopic experiments were supported by molecular dynamics simulations and molecular docking results.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.11.296