Separate extraction of human eccrine sweat gland activity and peripheral hemodynamics from high- and low-quality thermal imaging data
Sweat gland activity and peripheral hemodynamics, which characterize the function of sympathetic cholinergic nerve fibers and the manifestation mechanisms of vascular tone regulation, respectively, can be detected via dynamic thermography of the skin. Thus, they are useful parameters for diagnosing...
Gespeichert in:
Veröffentlicht in: | Journal of thermal biology 2022-12, Vol.110, p.103351-103351, Article 103351 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sweat gland activity and peripheral hemodynamics, which characterize the function of sympathetic cholinergic nerve fibers and the manifestation mechanisms of vascular tone regulation, respectively, can be detected via dynamic thermography of the skin. Thus, they are useful parameters for diagnosing various forms of neuropathy and functional circulatory disorders. Both parameters affect the dynamics of the skin temperature; therefore, for an adequate description of thermographic data, it is necessary to build models that consider both these coexisting components simultaneously.
The objective of this study was to determine the spatiotemporal and statistical features of dynamic thermograms of skin areas with sweat glands and to develop methods for the extraction of temperature components mediated by sweat gland activity (Tsweat) separately from hemodynamics (Tblood) based on thermograms of high and low temperature resolutions.
To separate the Tsweat and Tblood components, simultaneous thermographic and photoplethysmographic (PPG) measurements were performed in the area of the fingers during a deep inspiratory gasp (DIG). PPG data, which were obtained solely by hemodynamics, were converted into a temperature signal (Tblood) using the spectral filtering approach. By calculating the difference between the skin (Tskin) and blood (Tblood) temperature components, the Tsweat component was determined, which characterizes sweat gland activity and the integrity of the cholinergic sympathetic nerve fibers that innervate them. The Tsweat component was compared with the active sweat pore count curve, which was determined by the adaptive detection of local temperature minima. Thermographic and PPG measurements were performed for 3 min on a group of 15 volunteers during the DIG test. The skin temperature was measured using a cooled thermal imaging camera in the spectral range of 8–9 μm with a temperature sensitivity of 0.02 °C. PPG measurements were performed using a reflectance sensor with a central wavelength of 800 nm. Wavelet analysis with the Morlet basis function was used to preliminarily determine the spectrum of spontaneous temperature oscillations in an area of the skin with and without sweat pores. Statistical parameters of the histogram, such as the standard deviation and the statistical pore activation index (SPAI) - which is proposed in this paper were used in the DIG test to detect sweat gland activity with low-temperature resolution thermograms. The temporal |
---|---|
ISSN: | 0306-4565 1879-0992 |
DOI: | 10.1016/j.jtherbio.2022.103351 |