Encapsulation of zero valent iron nanoparticles in biodegradable amphiphilic janus particles for groundwater remediation

Reactive Zero Valent Iron (ZVI) nanoparticles have been widely explored for in situ ground water remediation to degrade both non-aqueous phase liquid (NAPL) and water-soluble contaminants. However, they usually suffer from rapid oxidation and severe agglomerations restricting their delivery at NAPL/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-03, Vol.445, p.130501-130501, Article 130501
Hauptverfasser: Pandey, Kalpana, Saha, Sampa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive Zero Valent Iron (ZVI) nanoparticles have been widely explored for in situ ground water remediation to degrade both non-aqueous phase liquid (NAPL) and water-soluble contaminants. However, they usually suffer from rapid oxidation and severe agglomerations restricting their delivery at NAPL/water interface. Aim of this study was to encapsulate the ZVI nanoparticles (50 nm) in amphiphilic bicompartmental Janus particles (711 ± 11 nm) fabricated by EHDC (electrohydrodynamic co-jetting). The dual compartments were composed of PLA (polylactic acid) and a blend of PLA, PE (poly (hexamethylene 2,3-O-isopropylidenetartarate) and PAG (photo acid generator). Upon UV irradiation, PAG releases acid to unmask hydroxyl groups present in PE to make only PE compartment hydrophilic. The entrapped ZVI nanoparticles (20 w/w%; ∼99 % encapsulation efficiency) were observed to degrade both hydrophilic (methyl orange dye) and hydrophobic (trichloro ethylene) contaminants. UV treated Janus particles provided stable dispersion (dispersed up to 3 weeks in water), prolonged reactivity (∼24 days in contaminated water), and recyclability (recyclable up to 9 times) as compared to non-treated ones. In addition, the amphiphilic Janus particles demonstrated high transportability (>95%) through porous media (sand column) with very low attachment efficiency (0.07), making them a promising candidate to target contaminants at NAPL/water interface prevailed in groundwater. [Display omitted] •Synthesis of biodegradable amphiphilic Janus particles containing ZVI nanoparticles.•Particles provide remediation of both hydrophobic and hydrophilic waste from water.•Excellent colloidal stability, recyclability, and transportability through sand.•A potential candidate for in situ groundwater remediation.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.130501