Grain-Boundary-Induced Ultrasensitive Molecular Detection of Graphene Film

Graphene has been considered a promising platform for molecular detection due to the graphene-enhanced Raman scattering (GERS) effect. However, the GERS performance of pristine graphene is limited by a low chemically active surface and insufficient density of states (DOS). Although diverse defects h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-12, Vol.22 (23), p.9380-9388
Hauptverfasser: Zhou, Tianya, Xu, Chuan, Ren, Wencai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene has been considered a promising platform for molecular detection due to the graphene-enhanced Raman scattering (GERS) effect. However, the GERS performance of pristine graphene is limited by a low chemically active surface and insufficient density of states (DOS). Although diverse defects have been introduced, it remains a great challenge to improve the enhancement performance. Here, we show that graphene grain boundaries (GBs) possess stronger adsorption capacity and more abundant DOS. Thus, GERS performance increases with the atomic percentage of GBs, which makes nanocrystalline graphene (NG) film a superior GERS substrate. For R6G as a probe molecule, a low detection limit of 3 × 10–10 M was achieved. Utilizing the high chemical activity of GBs, we also fabricated NG film decorated with Au particles using a one-step quenching strategy, and this hybrid film exhibits an extremely low limit of detection down to 5 × 10–11 M, outperforming all the reported graphene-based systems.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c03218