Emission of odor pollutants and variation in microbial community during the initial decomposition stage of municipal biowaste
Odor pollution often occurs in the initial decomposition stage of municipal biowaste, including throwing/collection and transportation. However, this aspect of odor impact from municipal biowaste has not been well studied. In this study, a practical dustbin (120 L) equipped with flux chamber and fil...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-02, Vol.861, p.160612-160612, Article 160612 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Odor pollution often occurs in the initial decomposition stage of municipal biowaste, including throwing/collection and transportation. However, this aspect of odor impact from municipal biowaste has not been well studied. In this study, a practical dustbin (120 L) equipped with flux chamber and filled with three types of municipal biowaste was used to simulate garbage storage conditions. The result indicated that the emission rate of odor pollutants for uncooked food waste (UFW) represented a nearly linear growth trend, reaching the maximum (3963 ± 149 μg kg−1 DM h−1) at 72 h. Cooked food waste (CFW) increased rapidly from 8 h to 24 h, and then remain fluctuated, reached the maximum (2026 ± 77 μg kg−1 DM h−1) at 72 h. Comparatively, household kitchen waste (HKW) reached the maximum emission rate (10,396 ± 363 μg kg−1 DM h−1) at 16 h. Sulfide and aldehydes ketones were identified as dominant odor contributor to UFW and CFW, respectively. While aldehydes ketones and sulfides were both dominant odor contributor to HKW. Moreover, the microbial diversity analysis suggests that Acinetobacter was the dominant genus in UFW, and Lactobacillus was the dominant genus in CFW and HKW. In addition, it was evident that each odorous pollutant was significantly associated with two or more bacterial genera, and most bacterial genera such as Acinetobacter, were also significantly associated with multiple odorous pollutants. The variation of odorants composition kept consistent with microbial composition. The present study could provide essential evidence for a comprehensive understanding of odorant generation in the initial decomposition stage of municipal biowaste. It could contribute to setting out strategies for odor control and abatement in municipal biowaste management systems.
[Display omitted]
•The highest emission was observed in household kitchen waste with alcohol esters.•The highest total odor activity values was observed in uncooked food waste.•Lactobacillus was the dominant genus in household kitchen waste and cooked food waste.•Acinetobacter was the dominant genus in uncooked food waste.•The variation of odorants composition kept consistent with microbial composition. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.160612 |