LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity

Histidine phosphorylation (pHis), occurring on the histidine of substrate proteins, is a hidden phosphoproteome that is poorly characterized in mammals. LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) is one of the histidine phosphatases and its encoding gene was recently i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2023-02, Vol.28 (2), p.908-918
Hauptverfasser: Lin, Dong, Li, Luhui, Chen, Wen-Bing, Chen, Jiang, Ren, Dongyan, Zheng, Zhi-Heng, Zhao, Changqin, Zhong, Yanzi, Luo, Bin, Jing, Hongyang, Chen, Peng, Zou, Suqi, Lai, Xinsheng, Zhou, Tian, Ding, Ning, Li, Lei, Pan, Bing-Xing, Fei, Erkang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histidine phosphorylation (pHis), occurring on the histidine of substrate proteins, is a hidden phosphoproteome that is poorly characterized in mammals. LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) is one of the histidine phosphatases and its encoding gene was recently identified as a susceptibility gene for major depressive disorder (MDD). However, little is known about how LHPP or pHis contributes to depression. Here, by using integrative approaches of genetics, behavior and electrophysiology, we observed that LHPP in the medial prefrontal cortex (mPFC) was essential in preventing stress-induced depression-like behaviors. While genetic deletion of LHPP per se failed to affect the mice’s depression-like behaviors, it markedly augmented the behaviors upon chronic social defeat stress (CSDS). This augmentation could be recapitulated by the local deletion of LHPP in mPFC. By contrast, overexpressing LHPP in mPFC increased the mice’s resilience against CSDS, suggesting a critical role of mPFC LHPP in stress-induced depression. We further found that LHPP deficiency increased the levels of histidine kinases (NME1/2) and global pHis in the cortex, and decreased glutamatergic transmission in mPFC upon CSDS. NME1/2 served as substrates of LHPP, with the Aspartic acid 17 (D17), Threonine 54 (T54), or D214 residue within LHPP being critical for its phosphatase activity. Finally, reintroducing LHPP, but not LHPP phosphatase-dead mutants, into the mPFC of LHPP-deficient mice reversed their behavioral and synaptic deficits upon CSDS. Together, these results demonstrate a critical role of LHPP in regulating stress-related depression and provide novel insight into the pathogenesis of MDD.
ISSN:1359-4184
1476-5578
DOI:10.1038/s41380-022-01893-0