Anti-inflammation and anti-aging mechanisms of mercaptopurine in vivo and in vitro

Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2023-01, Vol.638, p.103-111
Hauptverfasser: Jia, HuiJie, Vashisth, Manoj Kumar, Ge, Yuchen, Dai, Qianlong, He, Fei, Wang, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent commonly used for treating Acute lymphoblastic leukemia and inflammatory bowel disease. The beneficial effects of mercaptopurine on the skin have not been reported, and its intrinsic mechanism of action is unclear. Therefore, this study was to explore mercaptopurine when exposed to UV-B radiation in HacaT cells and C57BL6 mice aging and damage effects. The model of in vivo UV-B-induced skin damage and skin photoaging was established, and the impact of mercaptopurine on cell and animal skin was studied. The study found that mercaptopurine, on the one hand, inhibits cellular and animal senescence. On the other, it inhibits the expression of mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NF-κB), which are important signaling molecules in the early UV-B reaction signaling pathway. In addition, mercaptopurine downregulates matrix metalloproteinase expression, increases collagen fiber content, and facilitates collagen synthesis. Treatment with mercaptopurine also inhibits the expression of inflammatory factors and reduces inflammatory cell infiltration of the skin. In conclusion, our study elucidates mercaptopurine's anti-photoaging and anti-inflammatory activity in cellular and animal models. •This is the first time that mercaptopurine has been shown to inhibit aging in vivo and in vivo.•Mercaptopurine relieves damage and inflammation caused by UVB exposure.•Mercaptopurine via the MAPK/NF- κB signal pathway resists photoaging and inflammation.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2022.11.035