Deep learning‐based Accelerated and Noise‐Suppressed Estimation (DANSE) of quantitative Gradient‐Recalled Echo (qGRE) magnetic resonance imaging metrics associated with human brain neuronal structure and hemodynamic properties

The purpose of the current study was to introduce a Deep learning‐based Accelerated and Noise‐Suppressed Estimation (DANSE) method for reconstructing quantitative maps of biological tissue cellular‐specific, R2t*, and hemodynamic‐specific, R2’, metrics of quantitative gradient‐recalled echo (qGRE) M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2023-05, Vol.36 (5), p.e4883-n/a
Hauptverfasser: Kahali, Sayan, Kothapalli, Satya V. V. N., Xu, Xiaojian, Kamilov, Ulugbek S., Yablonskiy, Dmitriy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of the current study was to introduce a Deep learning‐based Accelerated and Noise‐Suppressed Estimation (DANSE) method for reconstructing quantitative maps of biological tissue cellular‐specific, R2t*, and hemodynamic‐specific, R2’, metrics of quantitative gradient‐recalled echo (qGRE) MRI. The DANSE method adapts a supervised learning paradigm to train a convolutional neural network for robust estimation of R2t* and R2’ maps with significantly reduced sensitivity to noise and the adverse effects of macroscopic (B0) magnetic field inhomogeneities directly from the gradient‐recalled echo (GRE) magnitude images. The R2t* and R2’ maps for training were generated by means of a voxel‐by‐voxel fitting of a previously developed biophysical quantitative qGRE model accounting for tissue, hemodynamic, and B0‐inhomogeneities contributions to multigradient‐echo GRE signal using a nonlinear least squares (NLLS) algorithm. We show that the DANSE model efficiently estimates the aforementioned qGRE maps and preserves all the features of the NLLS approach with significant improvements including noise suppression and computation speed (from many hours to seconds). The noise‐suppression feature of DANSE is especially prominent for data with low signal‐to‐noise ratio (SNR ~ 50–100), where DANSE‐generated R2t* and R2’ maps had up to three times smaller errors than that of the NLLS method. The DANSE method enables fast reconstruction of qGRE maps with significantly reduced sensitivity to noise and magnetic field inhomogeneities. The DANSE method does not require any information about field inhomogeneities during application. It exploits spatial and gradient echo time‐dependent patterns in the GRE data and previously gained knowledge from the biophysical model, thus producing high quality qGRE maps, even in environments with high noise levels. These features along with fast computational speed can lead to broad qGRE clinical and research applications. The DANSE method enables fast reconstruction of qGRE R2t* and R2’ maps with significantly reduced sensitivity to noise and magnetic field inhomogeneities. DANSE does not require any information about field inhomogeneities during application as it exploits spatial and gradient echo time‐dependent patterns in the GRE data and previously gained knowledge from the biophysical model.
ISSN:0952-3480
1099-1492
DOI:10.1002/nbm.4883