Electrical characteristics and annealing study of boron-doped polycrystalline diamond films
In this study, annealing was applied to as-grown boron-doped diamond films. The current-voltage (I-V) characteristics of the Al /boron-doped diamond films were also investigated. The conductivity of films was examined to determine the effect of annealing on boron-doped diamond films. Experimental re...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1995, Vol.142 (12), p.L223-L225 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, annealing was applied to as-grown boron-doped diamond films. The current-voltage (I-V) characteristics of the Al /boron-doped diamond films were also investigated. The conductivity of films was examined to determine the effect of annealing on boron-doped diamond films. Experimental results indicated that the activation energy for the as-deposited diamond films (intrinsic or light boron-doped) is about 0.38 eV. After annealing, the activation energy did not change. However, the activation energy of the heavily doped films changed remarkably to 0.014 eV after annealing. FTIR and cathodoluminescence were performed to understand more clearly the correlation between the activation energy and the annealing effect on B-doped diamond films. These results revealed that for the lightly B-doped films, the boron atoms were effectively activated at the substitutional site. For the heavily doped case, boron was initially located in an inactive site (e.g., grain boundary, interstitial or clustering sites) and would diffuse into the substitutional site after annealing at 900 C. 20 refs. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1.2048504 |