Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces

Universal bounds for the cardinality of codes in the Hamming space F/sub r//sup n/ with a given minimum distance d and/or dual distance d' are stated. A self-contained proof of optimality of these bounds in the framework of the linear programming method is given. The necessary and sufficient co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1995-09, Vol.41 (5), p.1303-1321
1. Verfasser: Levenshtein, V.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Universal bounds for the cardinality of codes in the Hamming space F/sub r//sup n/ with a given minimum distance d and/or dual distance d' are stated. A self-contained proof of optimality of these bounds in the framework of the linear programming method is given. The necessary and sufficient conditions for attainability of the bounds are found. The parameters of codes satisfying these conditions are presented in a table. A new upper bound for the minimum distance of self-dual codes and a new lower bound for the crosscorrelation of half-linear codes are obtained.< >
ISSN:0018-9448
1557-9654
DOI:10.1109/18.412678