Enhancement of thermoelectric power factor via electron energy filtering in Cu doped MoS2 on carbon fabric for wearable thermoelectric generator applications
[Display omitted] The design and construction of state-of-the-art wearable thermoelectric materials are important for the development of self-powered wearable thermoelectric generators (WTEGs). Molybdenum disulfide (MoS2) has been reported as a noteworthy thermoelectric (TE) material because of its...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-03, Vol.633, p.120-131 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The design and construction of state-of-the-art wearable thermoelectric materials are important for the development of self-powered wearable thermoelectric generators (WTEGs). Molybdenum disulfide (MoS2) has been reported as a noteworthy thermoelectric (TE) material because of its large intrinsic bandgap and high carrier mobility. In this work, Cu-doped two-dimensional layered MoS2 nanosheets were grown on carbon fabric (CF) via a hydrothermal method. The electrical conductivity, Seebeck coefficient, and power factor for the Cu-doped MoS2 were found to increase with increasing temperature. The maximum Seebeck coefficient was obtained for a MoS2 sample doped with 4 at% of Cu (CM4) was ∼10 μV/K at 303 K and ∼13 μV/K at 373 K. The enhancement in the Seebeck coefficient was attributed to an energy-filtering effect caused by the interfacial barrier between MoS2 and Cu. In addition, a thermoelectric device was designed with four pairs of TE materials, where CM4 (4 at%) was used as a p-type material and Cu wire was used as an n-type material. These p- and n-type materials were connected electrically in series and thermally in parallel to generate a voltage of 190.7 μV at a temperature gradient of 8 K. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.10.147 |