Knockdown of miR-150-5p reduces hypoxia-induced autophagy and epithelial-mesenchymal transition of endometriotic cells via regulating the PDCD4/NF-κB signaling pathway
Hypoxia is an important microenvironmental factor that induces Endometriosis (EMs), but its mechanism remains unclear. Our study aims to investigate the mechanisms of miR-150-5p on hypoxia-induced EMs. Ovarian endometriosis cyst wall stromal cell lines CRL-7566 cells were treated with hypoxia. Cell...
Gespeichert in:
Veröffentlicht in: | Cytokine (Philadelphia, Pa.) Pa.), 2023-02, Vol.162, p.156086-156086, Article 156086 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia is an important microenvironmental factor that induces Endometriosis (EMs), but its mechanism remains unclear. Our study aims to investigate the mechanisms of miR-150-5p on hypoxia-induced EMs.
Ovarian endometriosis cyst wall stromal cell lines CRL-7566 cells were treated with hypoxia. Cell migration ability was measured by Transwell assay. qRT-PCR was performed to detect miR-150-5p and PDCD4 expression. The autophagy-related proteins (LC3-I, LC3-II, Beclin-1, and p62), epithelial-mesenchymal transition (EMT) related proteins (E-cadherin, N-cadherin, and Vimentin) and NF-κB signaling pathway related proteins p65 expression were measured by western blot. Dual-luciferase reporter gene assay verified the binding relationship between miR-150-5p and PDCD4.
After hypoxia treatment, the miR-150-5p expression was up-regulated in CRL-7566 cells, while the expression of PDCD4 was down-regulated. In CRL-7566 cells, autophagy, migration and EMT were increased after hypoxia treatment. The autophagy inhibitor 3-MA inhibited hypoxia-induced the autophagy, migration and EMT of CRL-7566 cells. Hypoxia-induced autophagy and EMT of CRL-7566 cells were inhibited after knocking down miR-150-5p. Then miR-150-5p negatively regulated PDCD4 expression. PDCD4 knockdown reversed the inhibitory effect of miR-150-5p silencing on hypoxia-induced autophagy and EMT of CRL-7566 cells. Inhibiting the NF-κB signaling pathway weakened the effect of PDCD4 knockdown on hypoxia-induced autophagy and EMT of CRL-7566 cells.
MiR-150-5p silencing inhibited hypoxia-induced autophagy and EMT of endometriotic cells by regulating the PDCD4/NF-κB signaling pathway. |
---|---|
ISSN: | 1043-4666 1096-0023 |
DOI: | 10.1016/j.cyto.2022.156086 |