Scaffold-based tissue engineering: Supercritical carbon dioxide as an alternative method for decellularization and sterilization of dense materials
Development of ready-to-use biomaterials and scaffolds is vital for further advancement of scaffold-based tissue engineering in clinical practice. Scaffolds need to mimic 3D ultrastructure, have adequate mechanical strength, are biocompatible, non-immunogenic and need to promote tissue regeneration...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2023-01, Vol.155, p.323-332 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of ready-to-use biomaterials and scaffolds is vital for further advancement of scaffold-based tissue engineering in clinical practice. Scaffolds need to mimic 3D ultrastructure, have adequate mechanical strength, are biocompatible, non-immunogenic and need to promote tissue regeneration in vivo. Although decellularization of native tissues seems promising to deliver scaffolds that meet these criteria, adequate decellularization of hard, poorly penetrable and poorly diffusible tissues remains challenging whilst being a very time-consuming process.
In this study, a method to decellularize hard, dense tissues using supercritical carbon-dioxide preceded by a freeze/thaw cycle and followed by several washing steps is presented, demonstrating decellularisation efficiency and substantially reduced production/handling time. Additionally, supercritical carbon-dioxide treatment was used as sterilization method, further reducing the time required to produce the final scaffold. Histological evaluation showed that, after fine-tuning of the process, a partially acellular scaffold was obtained, with preservation of glycosaminoglycans and collagen fibers, albeit that the amount of residual dsDNA was still higher then chemically decellularized tissue. Biomechanical properties of the scaffold were similar to the native, non-decellularized tissue. After sterilization with supercritical carbon-dioxide the simulated functional outcome was more similar to native trachea, when compared to sterilization using gamma irradiation.
Thus, decellularization and sterilization using supercritical carbon-dioxide with washing steps is an effective method for dense cartilaginous materials, and tuneable to meet different demands in other applications, but further optimization may be required.
Further advancement of the use of tissue engineered tracheal constructs is restricted by the lack of the ideal scaffold. Decellularized trachea is considered a promising scaffold, but the hard, poorly diffusible tissue remains challenging while forming a very time consumable process. Decellularization using supercritical carbon dioxide (scCO2) seems promising, resulting in efficient removal of cellular material while reducing production and handling time. Addition of scCO2 as a sterilization method resulted in further time reduction while improving functional outcome in comparison with traditional sterilization methods. This study presents an promising alternative method for decellularizatio |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2022.11.028 |