Catalytic wet peroxide oxidation of phenol through mesoporous silica-pillared clays supported iron and/or titanium incorporated catalysts

Catalytic performances of Silica Pillared Clay (SPC) supports synthesized in different silica amounts both from standard SWy-2 clay mineral and Hançılı region bentonite rock (HWB), and iron (Fe) and/or titanium (Ti) incorporated SPCs in different combinations were evaluated in various advanced Catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-01, Vol.326, p.116835-116835, Article 116835
Hauptverfasser: Balcı, Suna, Tomul, Fatma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalytic performances of Silica Pillared Clay (SPC) supports synthesized in different silica amounts both from standard SWy-2 clay mineral and Hançılı region bentonite rock (HWB), and iron (Fe) and/or titanium (Ti) incorporated SPCs in different combinations were evaluated in various advanced Catalytic Wet Peroxide Oxidation (CWPO) of phenol. Host clay mineral type led to different oxidation performances and metal loading created significant increases in the catalytic performance. CWPO performance of Fe-loaded SPCs was better than Ti-loaded ones, so oxidation parameters for Fe–SPCs were studied in detail. Catalyst amount and rise in temperature increased phenol conversion values significantly, and catalysts were more effective in lower pH reaction medium. Aromatic intermediates such as catechol, hydroquinone and benzoquinone formed at the beginning of oxidation were oxidized to carboxylic acids with an advancing oxidation time. The presence of carboxylic acids such as oxalic and formic acid resulted in relatively low total organic carbon (TOC) conversion values. The highest catalytic activity was obtained with high silica content Fe–SPCs synthesized with both host clays. Complete conversion was nearly achieved within 60 min with an experimental condition of T = 30 °C, pH = 3.7 and catalyst/solution ratio = 2 g/L for SWy-2 based catalyst by applying either CWPO or PCWPO (Photo Catalytic Wet Peroxide Oxidation) techniques. SCWPO (Sono Catalytic Wet Peroxide Oxidation) technique also yielded this value at the same oxidation conditions for HWB based catalyst. TOC conversion values at 240 min oxidation time were determined as 33% and 48% for SWy-2 based catalyst with CWPO and PCWPO techniques, respectively, and 37% for HWB based catalyst with SCWPO technique. SWy-2 based catalyst still retained its performance after 3 cycles. [Display omitted] •Type of support clay exhibited a notable effect on catalytic performance of PILCs.•CWPO and PCWPO methods were more effective in SWy-2 based catalysts.•Fe loading led to a significant increase in catalyst performance.•Nearly complete conversion was achieved with Fe-catalysts in 60 min.•After three cycles, similar efficiency was observed.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2022.116835