Effects of different oxygen regimes on ecological performance and bioenergetics of a coastal marine bioturbator, the soft shell clam Mya arenaria

Benthic species are exposed to oxygen fluctuations that can affect their performance and survival. Physiological effects and ecological consequences of fluctuating oxygen are not well understood in marine bioturbators such as the soft-shell clam Mya arenaria. We explored the effects of different oxy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-02, Vol.860, p.160459-160459, Article 160459
Hauptverfasser: Ouillon, Natascha, Forster, Stefan, Timm, Stefan, Jarrett, Abigail, Otto, Stefan, Rehder, Gregor, Sokolova, Inna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benthic species are exposed to oxygen fluctuations that can affect their performance and survival. Physiological effects and ecological consequences of fluctuating oxygen are not well understood in marine bioturbators such as the soft-shell clam Mya arenaria. We explored the effects of different oxygen regimes (21 days of exposure to constant hypoxia (~4.1 kPa PO2), cyclic hypoxia (~2.1–~10.4 kPa PO2) or normoxia (~21 kPa PO2)) on energy metabolism, oxidative stress and ecological behaviors (bioirrigation and bioturbation) of M. arenaria. Constant hypoxia and post-hypoxic recovery in cyclic hypoxia led to oxidative injury of proteins and lipids, respectively. Clams acclimated to constant hypoxia maintained aerobic capacity similar to the normoxic clams. In contrast, clams acclimated to cyclic hypoxia suppressed aerobic metabolism and activated anaerobiosis during hypoxia, and strongly upregulated aerobic metabolism during recovery. Constant hypoxia led to decreased lipid content, whereas in cyclic hypoxia proteins and glycogen accumulated during recovery and were broken down during the hypoxic phase. Digging of clams was impaired by constant and cyclic hypoxia, and bioirrigation was also suppressed under constant hypoxia. Overall, cyclic hypoxia appears less stressful for M. arenaria due to the metabolic flexibility that ensures recovery during reoxygenation and mitigates the negative effects of hypoxia, whereas constant hypoxia leads to depletion of energy reserves and impairs ecological functions of M. arenaria potentially leading to negative ecological consequences in benthic ecosystems. [Display omitted] •Effects of hypoxia on clam metabolism, behavior and oxidative injury was studied.•Constant hypoxia impaired bioirrigation and digging but not aerobic metabolism.•Cyclic hypoxia led to a switch of aerobic to anaerobic metabolism.•Oxidative damage was observed in both hypoxic exposures.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.160459