The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study
Objective Adequacy of the Revised NIOSH Lifting Equation (RNLE) in maintaining lumbosacral (L5-S1) loads below their recommended action limits in stoop, full-squat, and semi-squat load-handling activities was investigated using a full-body musculoskeletal model. Background The NIOSH committee did no...
Gespeichert in:
Veröffentlicht in: | Human factors 2024-05, Vol.66 (5), p.1387-1398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
Adequacy of the Revised NIOSH Lifting Equation (RNLE) in maintaining lumbosacral (L5-S1) loads below their recommended action limits in stoop, full-squat, and semi-squat load-handling activities was investigated using a full-body musculoskeletal model.
Background
The NIOSH committee did not consider the lifting technique adapted by workers when estimating the recommended weight limit (RWL). It is currently unknown whether the lifting technique adapted by workers would affect the competence of the RNLE in keeping spine loads below their recommended limits.
Method
A full-body subject-specific musculoskeletal model (Anybody Modeling System, AMS) driven by a 10-camera Vicon motion capture system (Vicon Motion Systems Inc., Oxford, UK) was used to simulate different static stoop, semi-squat, and full-squat load-handling activities of ten normal-weight volunteers (mean of ∼70 kg corresponding to the 15th percentile of adult American males) with the task-specific NIOSH RWL held in hands.
Results
Two-way repeated measures ANOVA revealed a significant effect of lifting technique on both the L5-S1 compression (p = 0.003) and shear (p = 0.004) loads with semi-squat technique resulting in significantly larger loads than both stoop and full-squat techniques (p < 0.05). While mean of L5-S1 loads remained smaller than their recommended limits, it is much expected that they pass these limits for heavier individuals, that is, for the 50th percentile of adult American males.
Conclusion
Spinal loads are expected to pass their recommended limits for heavier individuals especially during semi-squat lifting as the most frequently adapted technique by workers.
Application
Caution is required for the assessment of semi-squat lifting activities by the RNLE. |
---|---|
ISSN: | 0018-7208 1547-8181 1547-8181 |
DOI: | 10.1177/00187208221141652 |