Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economi...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-12, Vol.144 (48), p.22140-22149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N′-dioxide/Sc(III)–ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c09691 |