Products of the visual cycle are detected in mice lacking retinol binding protein 4, the only known vitamin A carrier in plasma

Efficient delivery of vitamin A to the retinal pigment epithelium is vital to the production of the light-sensitive visual chromophore 11-cis-retinal. Nevertheless, retinol binding protein 4 (RBP4) is the only known carrier of vitamin A in plasma. Here, we present new findings that further character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-12, Vol.298 (12), p.102722-102722, Article 102722
Hauptverfasser: Montenegro, Diego, Zhao, Jin, Kim, Hye Jin, Shmarakov, Igor O., Blaner, William S., Sparrow, Janet R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient delivery of vitamin A to the retinal pigment epithelium is vital to the production of the light-sensitive visual chromophore 11-cis-retinal. Nevertheless, retinol binding protein 4 (RBP4) is the only known carrier of vitamin A in plasma. Here, we present new findings that further characterize the visual cycle in the presence of Rbp4 deficiency. In the face of impaired delivery of retinol in Rbp4−/− mice, we determined that 11-cis-retinaldehyde reached levels that were ∼60% of WT at 4 months of age and all-trans-retinyl ester was 18% of normal yet photoreceptor cell loss was apparent by 8 months of age. The lack of Rbp4 appeared to have a greater impact on scotopic rod–mediated responses than on cone function at early ages. Also, despite severely impaired delivery of retinol, bisretinoid lipofuscin that forms as a byproduct of the visual cycle was measurable by HPLC and by quantitative fundus autofluorescence. In mice carrying an Rpe65 amino acid variant that slows visual cycle kinetics, Rbp4 deficiency had a less pronounced effect on 11-cis-retinal levels. Finally, we found that ocular retinoids were not altered in mice expressing elevated adipose-derived total Rbp4 protein (hRBP4+/+AdiCre+/−). In conclusion, our findings are consistent with a model in which vitamin A can be delivered to the retina by Rbp4-independent pathways.
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2022.102722