Fast parallel algorithms for the maximum sum problem

A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 1995, Vol.21 (3), p.461-466
1. Verfasser: Wen, Zhaofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 3
container_start_page 461
container_title Parallel computing
container_volume 21
creator Wen, Zhaofang
description A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of n real numbers. We give an algorithm for the 1D version running in O(log n) time using O( (n) ( log n) ) processors on the EREW PRAM, and an algorithm for the 2D version which takes O(log n) time using O( (n 3) ( log n) ) processors on the EREW PRAM.
doi_str_mv 10.1016/0167-8191(94)00063-G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27383909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016781919400063G</els_id><sourcerecordid>27383909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e2461de0cf89d515c653cf5f1977623bc45540b7cb7c5770eb76fdd5a0088ac73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMMeRPSwmmz-7kWQYqtQ8KLnkM1ObCTbrclW9NubtcWjMI-5_N4M7yF0TvANwUTcZslSkZpc1ewaYyxouThAE6JkVUpKxSGa_CHH6CSl9xFiCk8Qm5s0FBsTTQgQChPe-uiHVZcK18diWEHRmS_fbbsiZW1i3wToTtGRMyHB2X5P0ev84WX2WC6fF0-z-2VpqWBDCRUTpAVsnapbTrgVnFrHHamlFBVtLOOc4UbaPFxKDI0Urm25wVgpYyWdosvd3fz3Ywtp0J1PFkIwa-i3SVeSKlrjOoNsB9rYpxTB6U30nYnfmmA9VqTH_HrMr2umfyvSi2y72N83yZrgollbn_68lFHOucrY3Q6DnPXTQ9TJelhbaH0EO-i29___-QEUTXlm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27383909</pqid></control><display><type>article</type><title>Fast parallel algorithms for the maximum sum problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wen, Zhaofang</creator><creatorcontrib>Wen, Zhaofang</creatorcontrib><description>A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of n real numbers. We give an algorithm for the 1D version running in O(log n) time using O( (n) ( log n) ) processors on the EREW PRAM, and an algorithm for the 2D version which takes O(log n) time using O( (n 3) ( log n) ) processors on the EREW PRAM.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/0167-8191(94)00063-G</identifier><identifier>CODEN: PACOEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Matrix ; Maximum sum ; Parallel algorithms ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing ; Vector</subject><ispartof>Parallel computing, 1995, Vol.21 (3), p.461-466</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e2461de0cf89d515c653cf5f1977623bc45540b7cb7c5770eb76fdd5a0088ac73</citedby><cites>FETCH-LOGICAL-c364t-e2461de0cf89d515c653cf5f1977623bc45540b7cb7c5770eb76fdd5a0088ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0167-8191(94)00063-G$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3435558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Zhaofang</creatorcontrib><title>Fast parallel algorithms for the maximum sum problem</title><title>Parallel computing</title><description>A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of n real numbers. We give an algorithm for the 1D version running in O(log n) time using O( (n) ( log n) ) processors on the EREW PRAM, and an algorithm for the 2D version which takes O(log n) time using O( (n 3) ( log n) ) processors on the EREW PRAM.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Matrix</subject><subject>Maximum sum</subject><subject>Parallel algorithms</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><subject>Vector</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwMMeRPSwmmz-7kWQYqtQ8KLnkM1ObCTbrclW9NubtcWjMI-5_N4M7yF0TvANwUTcZslSkZpc1ewaYyxouThAE6JkVUpKxSGa_CHH6CSl9xFiCk8Qm5s0FBsTTQgQChPe-uiHVZcK18diWEHRmS_fbbsiZW1i3wToTtGRMyHB2X5P0ev84WX2WC6fF0-z-2VpqWBDCRUTpAVsnapbTrgVnFrHHamlFBVtLOOc4UbaPFxKDI0Urm25wVgpYyWdosvd3fz3Ywtp0J1PFkIwa-i3SVeSKlrjOoNsB9rYpxTB6U30nYnfmmA9VqTH_HrMr2umfyvSi2y72N83yZrgollbn_68lFHOucrY3Q6DnPXTQ9TJelhbaH0EO-i29___-QEUTXlm</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Wen, Zhaofang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Fast parallel algorithms for the maximum sum problem</title><author>Wen, Zhaofang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e2461de0cf89d515c653cf5f1977623bc45540b7cb7c5770eb76fdd5a0088ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Matrix</topic><topic>Maximum sum</topic><topic>Parallel algorithms</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><topic>Vector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Zhaofang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Zhaofang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast parallel algorithms for the maximum sum problem</atitle><jtitle>Parallel computing</jtitle><date>1995</date><risdate>1995</risdate><volume>21</volume><issue>3</issue><spage>461</spage><epage>466</epage><pages>461-466</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><coden>PACOEJ</coden><abstract>A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of n real numbers. We give an algorithm for the 1D version running in O(log n) time using O( (n) ( log n) ) processors on the EREW PRAM, and an algorithm for the 2D version which takes O(log n) time using O( (n 3) ( log n) ) processors on the EREW PRAM.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-8191(94)00063-G</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 1995, Vol.21 (3), p.461-466
issn 0167-8191
1872-7336
language eng
recordid cdi_proquest_miscellaneous_27383909
source Elsevier ScienceDirect Journals Complete
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Matrix
Maximum sum
Parallel algorithms
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
Vector
title Fast parallel algorithms for the maximum sum problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20parallel%20algorithms%20for%20the%20maximum%20sum%20problem&rft.jtitle=Parallel%20computing&rft.au=Wen,%20Zhaofang&rft.date=1995&rft.volume=21&rft.issue=3&rft.spage=461&rft.epage=466&rft.pages=461-466&rft.issn=0167-8191&rft.eissn=1872-7336&rft.coden=PACOEJ&rft_id=info:doi/10.1016/0167-8191(94)00063-G&rft_dat=%3Cproquest_cross%3E27383909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27383909&rft_id=info:pmid/&rft_els_id=016781919400063G&rfr_iscdi=true