Fast parallel algorithms for the maximum sum problem
A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given...
Gespeichert in:
Veröffentlicht in: | Parallel computing 1995, Vol.21 (3), p.461-466 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given (
n ×
n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of
n real numbers. We give an algorithm for the 1D version running in
O(log
n) time using
O(
(n)
(
log n)
)
processors on the EREW PRAM, and an algorithm for the 2D version which takes
O(log
n) time using
O(
(n
3)
(
log n)
)
processors on the EREW PRAM. |
---|---|
ISSN: | 0167-8191 1872-7336 |
DOI: | 10.1016/0167-8191(94)00063-G |