Fast parallel algorithms for the maximum sum problem

A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 1995, Vol.21 (3), p.461-466
1. Verfasser: Wen, Zhaofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A problem in pattern recognition is to find the maximum sum over all rectangular subregions of a given ( n × n) matrix of real numbers. The problem has one-dimensional (1D) and two-dimensional (2D) versions. For the 1D version, it is to find the maximum sum over all contiguous subvectors of a given vector of n real numbers. We give an algorithm for the 1D version running in O(log n) time using O( (n) ( log n) ) processors on the EREW PRAM, and an algorithm for the 2D version which takes O(log n) time using O( (n 3) ( log n) ) processors on the EREW PRAM.
ISSN:0167-8191
1872-7336
DOI:10.1016/0167-8191(94)00063-G