On-Demand Electrochemical Fabrication of Ordered Nanoparticle Arrays using Scanning Electrochemical Cell Microscopy

Well-ordered nanoparticle arrays are attractive platforms for a variety of analytical applications, but the fabrication of such arrays is generally challenging. Here, it is demonstrated that scanning electrochemical cell microscopy (SECCM) can be used as a powerful, instantly reconfigurable tool for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-12, Vol.16 (12), p.21275-21282
Hauptverfasser: Rahman, Md. Maksudur, Tolbert, Chloe L., Saha, Partha, Halpern, Jeffrey M., Hill, Caleb M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Well-ordered nanoparticle arrays are attractive platforms for a variety of analytical applications, but the fabrication of such arrays is generally challenging. Here, it is demonstrated that scanning electrochemical cell microscopy (SECCM) can be used as a powerful, instantly reconfigurable tool for the fabrication of ordered nanoparticle arrays. Using SECCM, Ag nanoparticle arrays were straightforwardly fabricated via electrodeposition at the interface between a substrate electrode and an electrolyte-filled pipet. By dynamically monitoring the currents flowing in an SECCM cell, individual nucleation and growth events could be detected and controlled to yield individual nanoparticles of controlled size. Characterization of the resulting arrays demonstrate that this SECCM-based approach enables spatial control of nanoparticle location comparable with the terminal diameter of the pipet employed and straightforward control over the volume of material deposited at each site within an array. These results provide further evidence for the utility of probe-based electrochemical techniques such as SECCM as tools for surface modification in addition to analysis.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c09336