Qi Wei Anti-burn Tincture Remodels Liver Metabolic Pathways and Treats Burn Wounds Efficiently

Abstract This work aims to elucidate the molecular mechanism of Qi Wei anti-burn Tincture (QW) on wound healing in burnt mice using metabolomics and molecular biology techniques. A scald model was first established in Kunming mice. After treatment, biochemical indicators for liver function and burnt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of burn care & research 2024-08, Vol.45 (4), p.916-925
Hauptverfasser: Wang, Shuai, Zhou, Hui, Cui, Weiqi, Zhang, Junwei, Wu, Deqiao, Zhang, Nan, Xu, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This work aims to elucidate the molecular mechanism of Qi Wei anti-burn Tincture (QW) on wound healing in burnt mice using metabolomics and molecular biology techniques. A scald model was first established in Kunming mice. After treatment, biochemical indicators for liver function and burnt skin tissues were then evaluated via biochemical detection and HE staining, respectively. Liver tissues were further analyzed for differential metabolites, inflammatory factors, and mRNA levels of cytokines using metabolomics and molecular biology techniques. Involved metabolic pathways were also identified using software. QW treatment did promote the healing of the burn wounds in Kunming mice with a downregulation of ALP, ALT, and AST to normal levels. In mouse liver tissue, the contents of glutamine, aspartic acid, and citrulline were significantly reduced, while the contents of 5-hydroxyproline, taurine, hypotaurine, and glutamic acid significantly increased. These major differential compounds are involved in the arginine metabolic pathway, nitrogen excretion, and the metabolism of taurine and hypotaurine, suggesting that QW reprogramed the above metabolic processes in the liver. Furthermore, the application of QW increased the expression of TGF-β1 and FGF-2 and reduced the levels of TNF-α, IL-1β, IL-6, and reactive oxygen species in the liver of mice induced by burn injury. This study found that QW treatment promoted metabolic pathway remodeling in the liver, which might be a potential mechanism for QW to treat burn wounds. Graphical Abstract Graphical Abstract
ISSN:1559-047X
1559-0488
1559-0488
DOI:10.1093/jbcr/irac175