Extended reality (XR) virtual practical and educational eGaming to provide effective immersive environments for learning and teaching in forensic science
[Display omitted] •Extended Reality digital resources can complement traditional learning methods.•Benefits of 24/7 access, asynchronous teaching and widens learning environments.•Access issues if poor internet connection or if not technologically competent.•Widens inclusivity, accessibility and fle...
Gespeichert in:
Veröffentlicht in: | Science & justice 2022-11, Vol.62 (6), p.696-707 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Extended Reality digital resources can complement traditional learning methods.•Benefits of 24/7 access, asynchronous teaching and widens learning environments.•Access issues if poor internet connection or if not technologically competent.•Widens inclusivity, accessibility and flexible work practices.
Online virtual learning resources have been available for learning and teaching in forensic science for some years now, but the recent global COVID-19 related periods of irregular lockdown have necessitated the rapid development of these for teaching, learning and CPD activities. However, these resources do need to be carefully constructed and grounded in pedagogic theory to be effective. This article details eXtended Reality (XR) learning and teaching environments to facilitate effective online teaching and learning for forensic geoscientists. The first two case studies discussed in this article make use of Thinglink software to produce virtual learning and teaching XR resources through an internet system, which was delivered to undergraduate students in 2021. Case one details a range of XR virtual laboratory-based equipment resources, providing a consistent, reliable and asynchronous learning and teaching experience, whilst the second case study presents an XR virtual learning applied geophysics resource developed for a 12-week CPD training programme. This programme involves recorded equipment video resources, accompanying datasets and worksheets for users to work through. Both case studies were positively received by learners, but there were issues encountered by learners with poor internet connections or computer skills, or who do not engage well with online learning. A third case study showcases an XR educational forensic geoscience eGame that was developed to take the user through a cold case search investigation, from desktop study through to field reconnaissance and multi-staged site investigations. Pedagogic research was undertaken with user questionnaires and interviews, providing evidence that the eGame was an effective learning and teaching tool. eGame users highly rated the eGame and reported that they raised awareness and understanding of the use of geophysics equipment and best practice of forensic geoscience search phased investigations. These types of XR virtual learning digital resources, whilst costly to produce in terms of development time and staff resource, provide a complementary virtual learning experience to in-situ |
---|---|
ISSN: | 1355-0306 1876-4452 |
DOI: | 10.1016/j.scijus.2022.04.004 |