p75NTR enhances cognitive dysfunction in a mouse Alzheimer's disease model by inhibiting microRNA-210-3p-mediated PCYT2 through activation of NF-κB
Alzheimer's disease (AD) is a main cause of dementia and exhibits abnormality in cognitive behaviors. Here, we probed into the role of p75 neurotrophin receptor (p75NTR) in cognitive dysfunction in AD. Primarily, C57BL/6 mouse and neuroblastoma cells were treated by amyloid-beta1–42 (Aβ1–42), r...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-01, Vol.225, p.404-415 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer's disease (AD) is a main cause of dementia and exhibits abnormality in cognitive behaviors. Here, we probed into the role of p75 neurotrophin receptor (p75NTR) in cognitive dysfunction in AD. Primarily, C57BL/6 mouse and neuroblastoma cells were treated by amyloid-beta1–42 (Aβ1–42), respectively, to establish the in vivo and in vitro models of AD. The downstream genes of p75NTR were predicted by RNA-sequencing and bioinformatics analysis. Then the interaction among p75NTR, nuclear factor kappa B (NF-κB), microRNA-210-3p (miR-210-3p) and phosphoethanolamine cytidylyltransferase 2 (PYCT2) was verified, followed by analysis of their effects on cognitive behaviors and biological characteristics of hippocampal neurons of mouse with AD-like symptoms. p75NTR knockout alleviated cognitive dysfunction in mice with AD-like symptoms and reduced Aβ1–42-induced hippocampal neuron damage and apoptosis. p75NTR up-regulated miR-210-3p expression by activating NF-κB, thereby limiting PCYT2 expression. PCYT2 silencing in p75NTR−/− mice promoted neuronal apoptosis and aggravated cognitive dysfunction in AD mouse models. In summary, p75NTR is capable of accelerating cognitive dysfunction in AD by mediating the NF-κB/miR-210-3p/PCYT2 axis. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.11.078 |