Visualizing Large Facet-Dependent Electronic Tuning in Monolayer WSe2 on Au Surfaces
Two-dimensional transition metal dichalcogenides (TMDs) have shown great importance in the development of novel ultrathin optoelectronic devices owing to their exceptional electronic and photonic properties. Effectively tuning their electronic band structures is not only desired in electronics appli...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-12, Vol.22 (23), p.9630-9637 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional transition metal dichalcogenides (TMDs) have shown great importance in the development of novel ultrathin optoelectronic devices owing to their exceptional electronic and photonic properties. Effectively tuning their electronic band structures is not only desired in electronics applications but also can facilitate more novel properties. In this work, we demonstrate that large electronic tuning on a WSe2 monolayer can be realized by different facets of a Au-foil substrate, forming in-plane p–n junctions with remarkable built-in electric fields. This facet-dependent tuning effect is directly visualized by using scanning tunneling microscopy and differential conductance (dI/dV) spectroscopy. First-principles calculations reveal that the atomic arrangement of the Au facet effectively changes the interfacial coupling and charge transfer, leading to different magnitudes of charge doping in WSe2. Our study would be beneficial for future customized fabrication of TMD-junction devices via facet-specific construction on the substrate. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c03785 |