Surface-Embedded Liquid Metal Electrodes with Abrasion Resistance via Direct Magnetic Printing

Gallium-based liquid metals (LMs) featuring both high conductivity and fluidity are ideal conductors for soft and stretchable electronics. However, their liquid nature is a double-edged sword in many key applications since LMs are inherently prone to mechanical damage. Although additional encapsulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-11, Vol.14 (47), p.53405-53412
Hauptverfasser: Zhang, Jin, Ma, Biao, Chen, Gangsheng, Chen, Yi, Xu, Chengtao, Hao, Qing, Zhao, Chao, Liu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gallium-based liquid metals (LMs) featuring both high conductivity and fluidity are ideal conductors for soft and stretchable electronics. However, their liquid nature is a double-edged sword in many key applications since LMs are inherently prone to mechanical damage. Although additional encapsulation is frequently used for the protection of delicate LM electrodes, it hinders the electrical interfacing with other objects for interconnection, sensing, and stimulation. Here, different from conventional patterning methods that deposit LM on or inside substrates, we for the first time report a simple strategy to create surface-embedded LM of eutectic gallium-indium (EGaIn) circuits with mechanical damage endurance. This was achieved by using direct magnetic printing to overcome the high surface tension of LM, allowing it to be passively filled into the laser-patterned microgrooves on soft substrates. We show that the surface-embedded LM circuits are resistant to mechanical erasure, washing, and peeling. We also show the applications of our surface-embedded LM electrodes in respiration monitoring and electrical stimulation of nerves. This work provides a simple and efficient way to create mechanically reliable LM microelectrodes, holding great promise for wearable and implantable bioelectronics.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c15282