Verteporfin inhibits the dedifferentiation of tubular epithelial cells via TGF-β1/Smad pathway but induces podocyte loss in diabetic nephropathy

The dedifferentiation of tubular epithelial cells has been identified as an important trigger of renal fibrosis. The Hippo pathway is a crucial regulator of cell proliferation and differentiation. In this study, we determined the role of Hippo proteins in tubular dedifferentiation in diabetic nephro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2022-12, Vol.311 (Pt B), p.121186-121186, Article 121186
Hauptverfasser: Qi, Chenyang, Hu, Yuan, Zeng, Mingyao, Chen, Hongru, Shi, Jiaoyu, Jue, Hao, Zhao, Zhonghua, Liu, Jun, Zhang, Zhigang, Xu, Yanyong, Wu, Huijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dedifferentiation of tubular epithelial cells has been identified as an important trigger of renal fibrosis. The Hippo pathway is a crucial regulator of cell proliferation and differentiation. In this study, we determined the role of Hippo proteins in tubular dedifferentiation in diabetic nephropathy (DN). In this study, we measured dedifferentiation markers and Hippo proteins in db/db mice and high glucose treated tubular epithelial cells. Then, verteporfin and knockdown of large tumor suppressor kinase (LATS) 1 and 2 were performed to uncover therapeutic targets for DN. Here, we found dedifferentiation and upregulated Hippo proteins in tubular epithelial cells in DN model both in vivo and in vitro. Both verteporfin and LATS knockdown could inhibit the tubular mesenchymal transition, but verteporfin showed broad inhibitory effect on Hippo proteins, especially nuclear YAP, and exacerbated podocyte loss of DN. LATS2 knockdown did not reverse the tubular E-Cadherin loss while it also induced podocyte apoptosis. Overall, intervention of LATS1 inhibited tubular dedifferentiation efficiently without affecting YAP and bringing podocyte apoptosis. Further mechanistic investigations revealed that the TGF-β1/Smad, instead of the YAP-TEAD-CTGF signaling, might be the underlying pathway through which verteporfin and LATS1 engaged in the tubular dedifferentiation. In conclusion, verteporfin is not a suitable treatment for DN owing to evitable podocyte loss and apoptosis. Targeting LATS1 is a better choice worthy of further investigation for DN therapy. [Display omitted]
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2022.121186