Preparation and photocatalytic performance study of dual Z-scheme Bi2Zr2O7/g-C3N4/Ag3PO4 for removal of antibiotics by visible-light

At present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2023-03, Vol.125, p.349-361
Hauptverfasser: Qu, Zhengjun, Jing, Zhenyang, Chen, Xiaoming, Wang, Zexiang, Ren, Hongfei, Huang, Lihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (Bi2Zr2O7/g-C3N4/Ag3PO4 (BCA)) was synthesized using a co-precipitation method, and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance. The re-combination of electron-hole pairs (e− and h+) in the valence band (VB) of g-C3N4 increases the redox potential of e− and h+, leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e−-h+ separation. As a photosensitizer, Ag3PO4 can enhance the visible light absorption capacity of the photocatalyst. The prepared photocatalyst showed strong stability, which was attributed to the efficient suppression of photo-corrosion of Ag3PO4 by transferring the e− to the VB of g-C3N4. Tetracycline was degraded efficiently by BCA-10% (the BCA with 10 wt.% of AgPO4) under visible light, and the degradation efficiency was up to 86.2%. This study experimentally suggested that the BCA photocatalyst has broad application prospects in removing antibiotic pollution. [Display omitted]
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2022.01.010