Characterization of intra-tissue strain fields in articular cartilage explants during post-loading recovery using high frequency ultrasound

This study aims to demonstrate the potential of ultrasound elastography as a research tool for non-destructive imaging of intra-tissue strain fields and tissue quality assessment in cartilage explants. Osteochondral plugs from bovine patellae were loaded up to 10, 40, or 70 N using a hemi-spherical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2022-12, Vol.145, p.111370-111370, Article 111370
Hauptverfasser: Pastrama, Maria, van Hees, Roy, Stavenuiter, Isabel, Petterson, Niels J., Ito, Keita, Lopata, Richard, van Donkelaar, Corrinus C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to demonstrate the potential of ultrasound elastography as a research tool for non-destructive imaging of intra-tissue strain fields and tissue quality assessment in cartilage explants. Osteochondral plugs from bovine patellae were loaded up to 10, 40, or 70 N using a hemi-spherical indenter. The load was kept constant for 15 min, after which samples were unloaded and ultrasound imaging of strain recovery over time was performed in the indented area for 1 h. Tissue strains were determined using speckle tracking and accumulated to LaGrangian strains in the indentation direction. For all samples, strain maps showed a heterogeneous strain field, with the highest values in the superficial cartilage under the indenter tip at the bottom of the indent and decreasing values in the deeper cartilage. Strains were higher at higher load levels and tissue recovery over time was faster after indentation at 10 N than at 40 N and 70 N. At lower compression levels most displacement occurred near the surface with little deformation in the deep layers, while at higher levels strains increased more evenly in all cartilage zones. Ultrasound elastography is a promising method for high resolution imaging of intra-tissue strain fields and evaluation of cartilage quality in tissue explants in a laboratory setting. In the future, it may become a clinical diagnostic tool used to identify the extent of cartilage damage around visible defects.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2022.111370