A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis
CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photo...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-01, Vol.62 (2), p.e202215013-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e202215013 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Li, Chaofeng Wang, Ruoyu Wang, Jiawei Liu, Liangxu Li, Hengrun Zheng, Haotian Ni, Jun |
description | CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future.
A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production. |
doi_str_mv | 10.1002/anie.202215013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736663130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759968384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</originalsourceid><addsrcrecordid>eNqF0LtOwzAABVALgWgprIwoEgtLix-J7YwlKrRSeQwwR07iNK6SONgJKBufwDfyJbhqKRILky3r-OrqAnCO4ARBiK9FreQEQ4xRABE5AEMUYDQmjJFDd_cJGTMeoAE4sXbtPOeQHoMBoYRxiPAQ3E-9uVoVZe9FumpEq5JSek-FbnVrdFOodPNedbVqey_XxouESXT99fH5IFdOv0nvRmnb120hrbKn4CgXpZVnu3MEXm5nz9F8vHy8W0TT5TglzFXiPA2xSDjKhXClgiBhyOcJzwgJOQ2FLzCiVIosFwEJE8pFKinOhKSMUkQDMgJX29zG6NdO2jaulE1lWYpa6s7GmBFKKUEEOnr5h651Z2rXzqkgDCkn3HdqslWp0dYamceNUZUwfYxgvBk63gwd74d2Hy52sV1SyWzPf5Z1INyCd1XK_p-4ePqwmP2GfwPqSInl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759968384</pqid></control><display><type>article</type><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</creator><creatorcontrib>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</creatorcontrib><description>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future.
A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202215013</identifier><identifier>PMID: 36378012</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biosynthesis ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon sequestration ; Carbon-Negative Biosynthesis ; CO2 Sequestration ; Cyanobacteria ; Cyanobacteria - metabolism ; Electron transport ; Extracellular Vesicles ; Metabolic engineering ; Modules ; Monoculture ; Photosynthesis ; Photosynthetic Chains ; Phototrophic Communities ; Sucrose ; Sucrose - metabolism</subject><ispartof>Angewandte Chemie International Edition, 2023-01, Vol.62 (2), p.e202215013-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</citedby><cites>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</cites><orcidid>0000-0001-7847-5899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202215013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202215013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36378012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chaofeng</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Liu, Liangxu</creatorcontrib><creatorcontrib>Li, Hengrun</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future.
A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</description><subject>Biosynthesis</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Carbon-Negative Biosynthesis</subject><subject>CO2 Sequestration</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Electron transport</subject><subject>Extracellular Vesicles</subject><subject>Metabolic engineering</subject><subject>Modules</subject><subject>Monoculture</subject><subject>Photosynthesis</subject><subject>Photosynthetic Chains</subject><subject>Phototrophic Communities</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAABVALgWgprIwoEgtLix-J7YwlKrRSeQwwR07iNK6SONgJKBufwDfyJbhqKRILky3r-OrqAnCO4ARBiK9FreQEQ4xRABE5AEMUYDQmjJFDd_cJGTMeoAE4sXbtPOeQHoMBoYRxiPAQ3E-9uVoVZe9FumpEq5JSek-FbnVrdFOodPNedbVqey_XxouESXT99fH5IFdOv0nvRmnb120hrbKn4CgXpZVnu3MEXm5nz9F8vHy8W0TT5TglzFXiPA2xSDjKhXClgiBhyOcJzwgJOQ2FLzCiVIosFwEJE8pFKinOhKSMUkQDMgJX29zG6NdO2jaulE1lWYpa6s7GmBFKKUEEOnr5h651Z2rXzqkgDCkn3HdqslWp0dYamceNUZUwfYxgvBk63gwd74d2Hy52sV1SyWzPf5Z1INyCd1XK_p-4ePqwmP2GfwPqSInl</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Li, Chaofeng</creator><creator>Wang, Ruoyu</creator><creator>Wang, Jiawei</creator><creator>Liu, Liangxu</creator><creator>Li, Hengrun</creator><creator>Zheng, Haotian</creator><creator>Ni, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7847-5899</orcidid></search><sort><creationdate>20230109</creationdate><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><author>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosynthesis</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Carbon-Negative Biosynthesis</topic><topic>CO2 Sequestration</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Electron transport</topic><topic>Extracellular Vesicles</topic><topic>Metabolic engineering</topic><topic>Modules</topic><topic>Monoculture</topic><topic>Photosynthesis</topic><topic>Photosynthetic Chains</topic><topic>Phototrophic Communities</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chaofeng</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Liu, Liangxu</creatorcontrib><creatorcontrib>Li, Hengrun</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chaofeng</au><au>Wang, Ruoyu</au><au>Wang, Jiawei</au><au>Liu, Liangxu</au><au>Li, Hengrun</au><au>Zheng, Haotian</au><au>Ni, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-01-09</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>e202215013</spage><epage>n/a</epage><pages>e202215013-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future.
A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36378012</pmid><doi>10.1002/anie.202215013</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7847-5899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-01, Vol.62 (2), p.e202215013-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2736663130 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biosynthesis Carbon - metabolism Carbon dioxide Carbon Dioxide - metabolism Carbon dioxide fixation Carbon sequestration Carbon-Negative Biosynthesis CO2 Sequestration Cyanobacteria Cyanobacteria - metabolism Electron transport Extracellular Vesicles Metabolic engineering Modules Monoculture Photosynthesis Photosynthetic Chains Phototrophic Communities Sucrose Sucrose - metabolism |
title | A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Compatible%20Phototrophic%20Community%20for%20Carbon%E2%80%90Negative%20Biosynthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Chaofeng&rft.date=2023-01-09&rft.volume=62&rft.issue=2&rft.spage=e202215013&rft.epage=n/a&rft.pages=e202215013-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202215013&rft_dat=%3Cproquest_cross%3E2759968384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759968384&rft_id=info:pmid/36378012&rfr_iscdi=true |