A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis

CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-01, Vol.62 (2), p.e202215013-n/a
Hauptverfasser: Li, Chaofeng, Wang, Ruoyu, Wang, Jiawei, Liu, Liangxu, Li, Hengrun, Zheng, Haotian, Ni, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e202215013
container_title Angewandte Chemie International Edition
container_volume 62
creator Li, Chaofeng
Wang, Ruoyu
Wang, Jiawei
Liu, Liangxu
Li, Hengrun
Zheng, Haotian
Ni, Jun
description CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future. A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.
doi_str_mv 10.1002/anie.202215013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736663130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759968384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</originalsourceid><addsrcrecordid>eNqF0LtOwzAABVALgWgprIwoEgtLix-J7YwlKrRSeQwwR07iNK6SONgJKBufwDfyJbhqKRILky3r-OrqAnCO4ARBiK9FreQEQ4xRABE5AEMUYDQmjJFDd_cJGTMeoAE4sXbtPOeQHoMBoYRxiPAQ3E-9uVoVZe9FumpEq5JSek-FbnVrdFOodPNedbVqey_XxouESXT99fH5IFdOv0nvRmnb120hrbKn4CgXpZVnu3MEXm5nz9F8vHy8W0TT5TglzFXiPA2xSDjKhXClgiBhyOcJzwgJOQ2FLzCiVIosFwEJE8pFKinOhKSMUkQDMgJX29zG6NdO2jaulE1lWYpa6s7GmBFKKUEEOnr5h651Z2rXzqkgDCkn3HdqslWp0dYamceNUZUwfYxgvBk63gwd74d2Hy52sV1SyWzPf5Z1INyCd1XK_p-4ePqwmP2GfwPqSInl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759968384</pqid></control><display><type>article</type><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</creator><creatorcontrib>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</creatorcontrib><description>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future. A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202215013</identifier><identifier>PMID: 36378012</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biosynthesis ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon sequestration ; Carbon-Negative Biosynthesis ; CO2 Sequestration ; Cyanobacteria ; Cyanobacteria - metabolism ; Electron transport ; Extracellular Vesicles ; Metabolic engineering ; Modules ; Monoculture ; Photosynthesis ; Photosynthetic Chains ; Phototrophic Communities ; Sucrose ; Sucrose - metabolism</subject><ispartof>Angewandte Chemie International Edition, 2023-01, Vol.62 (2), p.e202215013-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</citedby><cites>FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</cites><orcidid>0000-0001-7847-5899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202215013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202215013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36378012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chaofeng</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Liu, Liangxu</creatorcontrib><creatorcontrib>Li, Hengrun</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future. A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</description><subject>Biosynthesis</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Carbon-Negative Biosynthesis</subject><subject>CO2 Sequestration</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Electron transport</subject><subject>Extracellular Vesicles</subject><subject>Metabolic engineering</subject><subject>Modules</subject><subject>Monoculture</subject><subject>Photosynthesis</subject><subject>Photosynthetic Chains</subject><subject>Phototrophic Communities</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAABVALgWgprIwoEgtLix-J7YwlKrRSeQwwR07iNK6SONgJKBufwDfyJbhqKRILky3r-OrqAnCO4ARBiK9FreQEQ4xRABE5AEMUYDQmjJFDd_cJGTMeoAE4sXbtPOeQHoMBoYRxiPAQ3E-9uVoVZe9FumpEq5JSek-FbnVrdFOodPNedbVqey_XxouESXT99fH5IFdOv0nvRmnb120hrbKn4CgXpZVnu3MEXm5nz9F8vHy8W0TT5TglzFXiPA2xSDjKhXClgiBhyOcJzwgJOQ2FLzCiVIosFwEJE8pFKinOhKSMUkQDMgJX29zG6NdO2jaulE1lWYpa6s7GmBFKKUEEOnr5h651Z2rXzqkgDCkn3HdqslWp0dYamceNUZUwfYxgvBk63gwd74d2Hy52sV1SyWzPf5Z1INyCd1XK_p-4ePqwmP2GfwPqSInl</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Li, Chaofeng</creator><creator>Wang, Ruoyu</creator><creator>Wang, Jiawei</creator><creator>Liu, Liangxu</creator><creator>Li, Hengrun</creator><creator>Zheng, Haotian</creator><creator>Ni, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7847-5899</orcidid></search><sort><creationdate>20230109</creationdate><title>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</title><author>Li, Chaofeng ; Wang, Ruoyu ; Wang, Jiawei ; Liu, Liangxu ; Li, Hengrun ; Zheng, Haotian ; Ni, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-88c92ab81faa00255b7148b8d339869a4a2166eadfa539b68ace62dae67661653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosynthesis</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Carbon-Negative Biosynthesis</topic><topic>CO2 Sequestration</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Electron transport</topic><topic>Extracellular Vesicles</topic><topic>Metabolic engineering</topic><topic>Modules</topic><topic>Monoculture</topic><topic>Photosynthesis</topic><topic>Photosynthetic Chains</topic><topic>Phototrophic Communities</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chaofeng</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Liu, Liangxu</creatorcontrib><creatorcontrib>Li, Hengrun</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chaofeng</au><au>Wang, Ruoyu</au><au>Wang, Jiawei</au><au>Liu, Liangxu</au><au>Li, Hengrun</au><au>Zheng, Haotian</au><au>Ni, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-01-09</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>e202215013</spage><epage>n/a</epage><pages>e202215013-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>CO2 sequestration engineering is promising for carbon‐negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose‐producing CO2 sequestration module and a super‐coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light‐driven community could facilitate circular economic implementation in the future. A highly compatible phototrophic community (HCPC) was developed through the integration of a CO2 sequestration module and a super‐coupled module, V. natriegens. Based on the HCPC platform, various chemicals could be directly synthesized from CO2, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This study provides design guidance for photosynthetic communities and new opportunities for carbon‐negative production.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36378012</pmid><doi>10.1002/anie.202215013</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7847-5899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-01, Vol.62 (2), p.e202215013-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2736663130
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biosynthesis
Carbon - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Carbon dioxide fixation
Carbon sequestration
Carbon-Negative Biosynthesis
CO2 Sequestration
Cyanobacteria
Cyanobacteria - metabolism
Electron transport
Extracellular Vesicles
Metabolic engineering
Modules
Monoculture
Photosynthesis
Photosynthetic Chains
Phototrophic Communities
Sucrose
Sucrose - metabolism
title A Highly Compatible Phototrophic Community for Carbon‐Negative Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Compatible%20Phototrophic%20Community%20for%20Carbon%E2%80%90Negative%20Biosynthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Chaofeng&rft.date=2023-01-09&rft.volume=62&rft.issue=2&rft.spage=e202215013&rft.epage=n/a&rft.pages=e202215013-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202215013&rft_dat=%3Cproquest_cross%3E2759968384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759968384&rft_id=info:pmid/36378012&rfr_iscdi=true